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SOME IMPLICATIONS OF SATELLITE SPIN EFFECTS

IN CYLINDRICAL PROBE MEASUREMENTS

Nathan J. Miller

ABSTHACT

In-situ measurements of a...llbient electron densities with satellite-borne

cylindrical probes exhibit periodic variations synchronous with the satellite's

spin cycle. Representing these fluctuations as a superposition of effects at­

tributable to both the presence of -the satellite wake and the geomagnetic field

leads to a model of the modulations of accelerated electron current to cylin­

drical probes in which one modulation component displays current variations

dependent upon the probe-velocity angle ('-f;) and the other displays variations

dependent upon the angle between the probe axis and the geomagnetic field lines

(13). The modulations produce an electron current decrease whenever the probe

axis rotates into the satellite wake or whenever the probe axis rotates toward

alignment with the geomagnetic field lines. With increasing altitude, the modu­

lation dependent upon '-f; decreases whereas the modulation dependent upon 13

increases. The '-f; dependent modulation component can be associated with the

presence of a wake structure and the 13 dependent component can be associated

with magnetic influence on the transport properties of thermal electrons such

that electron fluxes are predominately along the field lines. The analysis results
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imply that the most accurate determinations of atmospheric electron densities

by satellite-borne cylindrical probes come from measurements taken out of the

satellite.'s wake and when the probe axis is within 20° of being perpendicular to

the geomagnetic field lines.
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SOME IMPLICATIONS OF SATELLITE SPIN EFFECTS

IN CYLINDRICAL PROBE MEASUREMENTS

INTRODUCTION

When the attempt is made to measure the density of thermal atmospheric

electrons via direct measurement satellite experiments, it is understood that·

the satellite may perturb the medium. Consequently, scientists have constructed

mathematical models of the charged particle redistribution about satellites so

that changes in particle density caused by a satellite's presence can be con­

sidered in measurement analysis and in the planning of new experiments (Davis

and Harris, 1961; Beard and Johnson, 1965; Al'pert et al., 1965; Walker, 1965;

'Taylor, 1967a, 1967b; Osborne and Kasha, 1967; Liu, 1969). These models are

not necessarily accurate descriptions of the true ionospheric- satellite inter­

action but they serve as first steps in studies which can be corrected, on the

basis of experimental measurements, to produce increasingly more realistic

models.

Langmuir probe data has been found to contain periodic electron current

variations in synchronization with a satellite's spin cycle (Bourdeau and Donley,

1965; Samir and Willmore, 1965; Henderson and Samir, 1967; Wrenn, 1969).

The results were not unanticipated since a planar Langmuir probe whose

collecting surface is oriented at 900 to a satellite's spin axis is expected to

detect electron density variations as a direct consequence of the probe's

rotation through the satellite's wake structure. Additional causes of periodic

1



probe current fluctuations have also been investigated. The relationship

between the orientation of a moving cylindrical probe and its ion current col-

lection was analyzed mathematically by Kanal (1964). He constructed theoretical

volt-ampere curves for different probe-velocity angles and found that the orien-

tation had negligible effect upon the electron temperature determination, but

had an increasingly important effect upon the accelerated ion current as the

ratio of probe velocity to the most probable ion speed increased. As a further

refinement, several authors (Bettinger and Chen, 1968; Hester and Sonin, 1970)

deduced the effects of ion current collected through the end of a satellite borne

cylindrical probe and showed that their predictions were qualitatively in line

with experimental measurements of increased ion currents when the probe is

in the ram position. A directionally sensitive instrument such as a satellite

borne cylindrical probe might also detect spin modulations in the electron cur-

rent collection because the geomagnetic field creates a preferred direction of

transport along the field lines for thermal electrons.

This report discusses cylindrical Langmuir probe measurements of
-- - _.- - -.- ----.-----

accelerated electron current taken during the winter 1965-66. According to

Langmuir probe theory, the current measurements are directly proportional to

Ne in the ambient plasma. Under some conditions, the electron densities deter-

mined from such data may vary by factors of 2 or 3 because of the spin modu-

lations. Measurements from at least 500 patellite rotations were studied in

order to get an understanding of these modulations. The specific examples
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chosen to represent the data came from geomagnetic latitudes between -12 0 and

-45°. The measurements contain the effects of both the satellite motion through

the plasma and the magnetic effects on electron thermal motions in a medium

permeated by a magnetic field. The modulating influences act simultaneously,

so a heuristic model of current modulations is used to separate the individual

influences and to investigate their geophysical implications.

THE EXPERIMENT

The experimental results come from the cylindrical Langmuir probe

experiment aboard the Explorer 31 satellite, a right octagonal prism (Figure 1).

. .
The satellite spin axis is along the satellite's axis of symmetry and is generally

perpendicular to the orbital plane. The Langmuir probe experiment consists of

two electrostatic probes mounted at 90° to the satellite's spin axis and positioned

op. opposite sides of the satellite near one end. The diameter of the probes is

approximately 0.06 cm as compared to the mean gyro radius for electrons of 3

to 14 cm for the altitude range of 500-3000 km where the satellite is operating.

The distance between opposing side panels of the satellite is 75 cm and the probe

collector surface spans the range 23-46 cm outward from a satellite panel.

A sawtooth voltage is independently applied to each probe at a frequency

that generates about 18 volt-ampere curves per spin cycle of 20 seconds. During

a rotation, the volt-ampere curves associated with one probe have a current

resolution suited to electron density (Ne ) analysis, which employs accelerated

electron current, and the other volt-ampere curves are suited to electron
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· temperature analysis, which employs retarded electron current. The curves

appropriate for Ne analysis display both a variation dependent upon the probe­

velocity angle and a variation dependent upon the probe's orientation to the' geo­

magnetic field. The volt-ampere curves used for electron temperature analysis

display little or no spin modulation except for the variations in ion current as

discussed by Brace, et al. (1971). Since this report is only concerned with

systematic modulations which appear in the accelerated electron currents, the

reader is referred to the literature for specifics on the experimental electronics,

measurement theory, and the probe equations associated with the Langmuir probe

experiment (Brace and Findlay, 1969; Findlay and Brace, 1969; Mott-Smith and

Langmuir, 1926).

THE DATA

Figure 2 shows volt-ampere curves from the Explorer 31 probe experiment

that are typical for those data used in Ne analysis. The base portion of the cur­

rent curves is the electron retarding region. The ascending portions of the

current curves represent accelerated electron current, which is drawn when

the probe becomes positive relative to the plasma. Variations in the curve

heights are the result of the spin modulations. An envelope of the high voltage

endpoints of the current cur~es approximates a continuous time variation in

accelerated electron current that would occur at constant positive probe poten­

tial. Curve A in Figure 3 shows how such an envelope looks when, instead of

time, the probe-v"Locity angle (I/J) is used as abscissa; I/J is the angle between
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the probe axis and the satellite's velocity vector. The data were taken at an

altitude of 770 km over a single spin cycle which spans 160 km along the orbit

path. Overlap in current values between the first and the last data points of the

spin cycle was close enough to assure that changing atmospheric conditions

were a minor influence on the current variations observed within a single spin

cycle. The overlap criterion was used throughout this study as a standard in

deciding which sets of data were least affected by spatial gradients or time

variations in the electron density and therefore would display the clearest

examples of the spin modulation.

Envelope curve A has approximate symmetry about the direction of the

satellite velocity. Curve B represents the same data plotted against a field

angle f3, the angle between the probe axis and the geomagnetic field. With re­

spect to field line orientation, curve B did not display an obvious symmetry. A

more compact method for plotting envelope curves is to use an abscissa with

angular values 00 to 180 0 and connect the data points in the order of their time

sequence. In Figure 4, which contains data taken near 600 km, such an envelope

curve is drawn with arrows along the curve to indicate the order in which the

data was measured. The compact plotting form causes any degree of asymmetry

about the velocity vector or the field direction to result in a loop structure for

the envelope curve. The spin modulation displayed in Figure 4 is nearly sym­

metric about the velocity vector as was the data of Figure 3.
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At higher altitudes, the probe measurements contain a greater degree of

geomagnetic field influence; thus, in Figure 5 there is near symmetry about the

direction of the geomagnetic field with current minima occurring whenever the

probe axis lies along the field lines. Current decreases occurred for a similar

orientation in Figure 3 but the deep wake made this feature less obvious. The

polar plot of Figure 6 shows the angular distribution of the data of Figure 5 in a

manner that more dramatically illustrates the magnetic field influence. Figure 7

is a polar plot of data taken at a low altitude where the decrease in density in the

wake is more significant than at a high altitude. Here the geomagnetic field in­

fluence leads to an asymmetric wake. In Figures 6 and 7 the probe axis passed

within 10° of both the field line and the satellite velocity directions, so the plane

of th~ graph represents the plane in which the measurements were taken.

An investigation of a large amount of Explorer 31 probe data makes it clear

that the loop form of envelope curves in Figures 4 and 5 was not merely the

result of random experimental errors in current measurements. Using the

compact plotting form, additional samples of data from altitudes between 600 km

and 2000 km are shown in Figures 8 and 9. These plots illustrate the extent to

which changing the independent variable affects the form of the envelope curve.

In general, the illustrated d9ta represents cases where the satellite spin axis

was nearly perpendicular to the plane formed by unit vectors in the direction of

vand B. This condition allowed the probe uxis to pass near both the satellite

velocity direction and the magnetic field direction, making it possible to study
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measurements made over the maximum range of both probe-velocity and field

. angles. In most of the data studied, the directions ofv X Band the satellite axis

were not parallel so the data to which a detailed analysis is applied were special

cases chosen for ease of analysis and because they would provide the best ex­

amples of the two principal modulation components whose effects appeared in

all of the data. The envelope curves of Figures 4 and 5 were presented separately

because those current modulations appeared to be predominately dependent upon

a single modulation component, a condition which made it possible to see the

general angular dependence of one modulating influence by plotting against a

single variable. In most cases, the total modulation was depengent upon both '-/;

and (3; hence, it was necessary to make physical assumptions in order to decom­

pose the total current modulation and obtain a quantitative estimate of the mag­

nitude of the modulation component.

THE SUPERPOSITION MODEL

Though an envelope of the end-points on the volt-ampere curves can be

drawn, no information exists between these points to suggest how the most

representative envelope should be constructed; thus, a current envelope curve

must be made consistent with reasonable physical assumptions. The first as-

. sumption was that the total modulation is the superposition of two independent

components, one only'-/; dependent, 6,J ('-/;), and the other only (3 dependent,

6, J «(3). The magnitude of the total modulation, 6,J (,-/;, (3) == 6, J ('-/;) + 6, J (f3), was
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taken as the difference in value between the measured current and some standard

current, e.g., the maximum current measured during a spin cycle might be taken

as the standard current. A second assumption was that the separate modulation

components should be symmetrical about some basic position. This required

that L.J (..jJ) should have angular symmetry about the direction of the satellite

velocity. On Figure 4, a ..jJ dependent modulating influence would result in equal

current collection at both the primed and unprimed probe orientations. The fact

that different currents are measured at similar ..jJ orientations is taken as evi­

dence for a 13 dependent component in the total modulation. In this way, the Hwk

of complete symmetry in the envelope curve A in Figure 3 is considered to be

due to the magnetic component of the total modulation. A symmetry assumption

was also made concerning L.J (13). In this case, L.J (13) ~as assumed to have

angular symmetry about the geomagnetic field lines. In Figure 5, L.J (13) would

lead to equal current collection at both primed and unprimed probe orientations.

That this does not occur in the total current measurements is attributed to the

influence of the satellite wake s~ructure as previously discussed. Finally, it was

assumed that the wake structure does not interfere with current collection in the

forward direction for ..jJ 2. 50°. This assumption allowed current decreases in

the forward direction to be af!signed as values of L. J (f3) for the purposes of

calculations.

To begin the analysis, a smooth curve 7,1aS drawn through each set of data

taken over a complete satellite rotation just as was done in Figures 3-9. Using
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the given assumptions, deviations from a standard current value were defined

as the magnitude of 6. J (y;, f3 ), where the standard current for each curve was

chosen to be the maximum accelerated ,electron current measured over a satel­

lite rotation. Since it was assumed that current deviations in the forward direc­

tion·were only f3 dependent, the magnitude of current decreases for orientations

. with y; 2. 50° were defined as values of 6.J (f3) and used to deduce the remaining

values for 6.J (f3) at other field angles. Values for 6.J (y;) were calculated ~s the

difference between the values of 6. J (y;, f3) and 6. J ( f3). The separate 'normalized

modulation components determined by applying the model assumptions to the

raw data presented in this report are shown in Figures 10 and 11. Since a very

simplified model is used as a basis for analysis, the fine structure of the calcu­

lated 6.J (y;) and 6.J (f3) functions should not be considered when examining the

gross features.

DISCUSSION

Modulations Dependent Upon Probe-Velocity Angle

In the introductory section, it was stated that one expected source of probe

current modulations was the wake structure of the satellite. A charged particle

wake forms because the' satellite velocity is greater than the mean thermal

velocity for the ions so the ions are unable to rapidly fill in behind a satellite as

it passes through the topside plasma. The electrons are then constrained from

completely filling in the wake by attraction to the ions outside the wake and by

repulsion from electrons already in the wake. Near the satellite surface,
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Gurevich, et ale (1964) refer to a wake region of maximum rarefaction for angles

to the satellite velocity greater than 120°. A charged satellite is surrounded by

a plasma sheath but in the angular range of the region of maximum rarefaction,

the limited ability of the ions to fill in the wake creates an abnormally large

region of unbalanced charge, which can be physically described as a plasma

sheath. In this region, both electron and ion densities are attenuated beyond the

degree of depletion in other wake regions.

Experimental measurements in the wake by Samir and Wrenn (1969) dis-

played a decrease in the depth of the charged particle wake at high altitudes.

Their determinations of ion composition and electron currents from two experi-

ments aboard Explorer 31 were consistent with the assumption that a decreasing

electron wake depth is caused by changes in principal ion from/O+ to H+. Another
I

wake feature was hinted at by Samir and Willmore (1965) who showed a curve

displaying the average angular variation in ion current collection based on probe

data taken over many satellite rotations. This curve suggested an ion wake en-

hancement near 120° relative to the satellite velocity direction.

In the format used to present the results of this report!:::'J ('-/;) represents

the fractional decrease in electron current collection when only changes in

probe-velocity angle are considered. When comparisons are made between what

is displayed by the modulation dependent upon probe-velocity· angle and what was

observed in previous wake studies the form of!:::,J ('-/;) adds to the confidence that

the superposition analysis has produced a reasonable separation of modulation
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components. The curves of 6.J ('f;) in It"'igure 10 exhibit an altitudinal trend of

decreasing depth at high altitudes and some examples of wake enhancements.

The modulation changed from a 60% current reduction in the wake at 600 km to

a 30% reduction at 2200 km. The position where a significant decrease in 6. J ('f;)

begins can be interpreted as the angular boundary for the region of maximum

rarefaction at the probe distance from the satellite surface. The undecomposed

, °

data for curve A in Figure 3 supports the conclusion drawn from the superposition

analysis that the wake enhancement is 'f; dependent since curve A is an example

where the wake enhancement in the raw data can be seen to have an approximate

symmetry about the velocity vector. The wake enhancement is not always present

and when it is, the geomagnetic influence in the total modulation can make the

symmetry less obvious. The enhancement at 120 0 in the 6.J ('f;) curves can be

considered as evidence for an electron effect, generated by the passage of the

satellite through the plasma, which has not been accounted for in the theories

of satellite-ionosphere interactions.

Modulations Dependent Upon the Field Angle

In experimental measurements, a dependence upon magnetic orientation is

expected to be only obvious in the data when the measurements involve a scale

length larger than the mean gyro radius. Thus, one would postulate that meas-

urements of electron current employing a cylindrical probe whose radius is

much less than the mean °electron gyro radius and which collects particles from

all pitch angles would contain practically no evidence of a magnetic orientation
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effect. However, the modulation curves of 6J (~) exhibit a definite decrease in

probe current whenever the probe axis passes parallel to the field lines. This

experimental result suggests that the magnetic field may be 'restricting the

current collection. When the probe axis is within 20° of the perpendicular to

the field lines, the fractional current decrease is negligible. The magnetic

component of the current modulation produces the largest current decreases at

the highest altitudes and since the depth of the electron wake is least there, the

magnetic influence becomes more important than the wake effects.

A physical explanation of the magnetic modulations can be arrived at by

examining the probe's current collecting mechanism. The probe draws its

current from the charged particles which enter its plasma sheath. At equi­

librium, the sheath boundary for a positive probe must encompass a volume of

plasma that contains enough electrons to neutralize the positive probe potential.

The effect of a decreasing plasma density at constant probe potential is to cause

a sheath expansion in order to maintain a constant amount of negative charge

within the sheath volume. When the sheath radius is much larger than a mean

gyro radi.us a probe oriented parallel to the field must collect a substantial

portion of its current by attracting electrons across field lines. In contrast, a

probe oriented perpendicular to the field can collect electron current by

attracting electrons along the field lines. Within this mechanism one expects

any magnetic orientation dependence in the current collection process to be

related to the difference in electron transport parallel and perpendicular to

12



the field. If the sheath radius grows relative to the mean gyro radius the

modulation should become more obvious.

As an illustrative example, the scale length concept can be applied to the

Passes 776 and 1408 in Figure 11 which shows different degrees of magnetic

modulation. The atmospheric parameters which differed significantly between

the two passes were the electron temperature and the magnetic field strength.

An actual sheath size is 'difficult to calculate for a moving probe, but sheath

radius is connected with Debye length. The ratios of Debye lengths and

electron gyro radii in these two passes are 1.3 and 2.3 respectively, where

both length parameters are greater in Pass 1408. The calculated length ratios

suggest that the gyro radius increased more than the sheath size and therefore,

the modulation should be less in Pass 1408. The curves of 6J (13) are con­

sistent with this conclusion. The ratio comparison is only used to obtain a

qualitative estimate of the effect that relative changes between sheath radius

and mean electron gyro radius might have in changing the depth of the magnetic

modulation. However, the calculation suggests that the apparent altitudinal

trend in the depth of the magnetic modulation is really caused by a changing

relationship between the gyro radius and sheath size. Ultimately, a theoretical

description of current collection by the cylindrical probe in a magnetized

plasma is needed in order to fully explain the m,agnetic modulation effects.
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Other Influences

It is understood that influences other than those previously discussed in

detail can affect the modulation of accelerated electron current, e.g., changes

in satellite potential or vX Beffects on the probe. Individually, these other.

influences were either not of sufficient magnitude or would not produce the kind

of variation in electron current required for the continuous periodic modulations

with which this report has been concerned. The accelerating probe potential

which results in the collection of electron current is defined relative to the

plasma potential. On the other hand, the applied probe potential is produced

relative to the satellite potential. The result is that changes in space potential

affect the collection of accelerated electron current. Samir and Wrenn (1969)

gave experimental examples of the variations in space potential which can occur

about a spacecraft. In the present study, these space potential variations did

not correlate with the current modulations and were too small to produce the

degree of current change that was observed.

Another effect in the current data exists because of the finite length of the

probe. In this ca$e, the electron current sometimes decreases as the probe

axis passes through the velocity ram position as in curve A of Figure 3. Since

one of the m04el assumptions was that there were nq velocity orientation effects

for lj; 2 50°, those passes which contained obvious electron current end effects

were not used for the detailed analysis.

14
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The overlap criterion which required repetition within the data between

consecutive satellite passes reduced the effect of gradients or temporal varia­

tions in the density which would affect the current modulations. Finally, the

effects of any induced potential from the movement of the satellite across mag­

netic field lines was reduced by choosing satellite rotations where the vector

vX Bwas essentially parallel to the spin axis of the satellite. ill this manner,

the probe axis was rotating in a plane of nearly constant induced potential.

CONCLUSIONS

A heuristic approach to the study of current modulations within the accel­

erated electron current measured via the cylindrical probe experiment aboard

Explorer 31 suggests that the total modulation can be analyzed as a linear super­

position of probe-velocity angle (1jJ) and probe-field line angle (13) dependent

modulations. This assumption along with that of symmetry permitted the gen­

eral behavior of persistent periodic electron current modulations to be displayed

and interpreted in a simplified manner. The IjJ dependent modulation contained

a decrease of current in the satellite wake similar in magnitude to that detected

by other researchers and also occasionally displayed an electron current en­

hancement which appeared near 120°. The f3 dependent modulation contained

current decreases whenever the probe axis approached the field line direction.

The altitude trends of the two types of modulations ran directly counter, with

the IjJ dependent modulation decreasing at higher altitudes. This trend makes

the magnetic modulation of probe electron current the more important modulation
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component at high altitudes. The modulation 6J(tf;) can be associated with

the redistribution of plasma about a moving satellite. The decrease in the

magnitude of 6J (tf;) at increasing altitude is consistent with a change in

+ +principal ion from 0 to H . The modulation 6](,8) can be associated with

the anisotropic transport of thermal electrons in a geomagnetic field. The

changing magnitude of 6J (,8) may be caused by relative length changes between

the sheath radius and the mean electron gyro radius .. Of importance to experi-

menters is the inference that above 600 km, the probe measurements provide the

most reliable electron density determinations when the probe axis is simul-

taneously at a probe-velocity angle of 90° or less and within 20° of being

transverse to the geomagnetic field lines.
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Figure 8. Electron current envelopes of volt-ampere curves taken during a satellite rotation with
the probe-velocity angle chosen as the. independent variabl.e. The numbers cit the data po·ints give
the value of the field angle. . .
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Figure 9. Electron current envelop,s of the same data as Figure 8 with a field angle chosen as
the 'independent var·iable. The numbers at the data points give the value of the probe-velocity .
angle.
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Figure 11. Normalized (3 dependent component 'of total current modulations for the data of
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